Multi-Cloud Provisioning and Load Distribution for Three-Tier Applications

NIKOLAY GROZEV, University of Melbourne, Australia
RAJKUMAR BUYYA, University of Melbourne, Australia

Cloud data centres are becoming the preferred deployment environment for a wide range of business applications, as they provide many benefits compared to private in-house infrastructure. However, the traditional approach of using a single cloud has several limitations in terms of availability, avoiding vendor lock-in and providing legislation compliant services with suitable Quality of Experience (QoE) to users worldwide. One way for Cloud clients to mitigate these issues is to use multiple clouds (i.e. a Multi-Cloud). In this paper we introduce an approach for deploying 3-tier applications across multiple clouds in order to satisfy their key non-functional requirements. We propose adaptive, dynamic and reactive resource provisioning and load distribution algorithms, which heuristically optimise the overall cost and the response delays, without violating essential legislative and regulatory requirements. Our simulation with realistic workload, network and cloud characteristics shows that our method improves the state of the art in terms of availability, regulatory compliance and QoE with acceptable sacrifice in cost and latency.

Categories and Subject Descriptors: D.2.11 [Software Engineering]: Software Architectures; C.2.4 [Computer-Communication Networks]: Distributed Systems

1. INTRODUCTION

Cloud computing is a disruptive IT paradigm, which changes the way businesses operate. Instead of owning, maintaining and administrating their own infrastructure, businesses can now dynamically rent resources on demand just as they need them [Buyya et al. 2009], [Mell and Grance 2011]. This allows them to avoid upfront investments in infrastructure that may not fit their dynamic needs at all times being either under or over-utilised. Moreover, enterprises can now eliminate activities like infrastructure maintenance and administration thus focusing on their core business operations.

The standard model of consuming a cloud service is when a client uses resources within a single cloud. However, this poses several challenges for cloud clients. Firstly, a data centre outage can leave clients without access to resources as exemplified by the outages of several major vendors [Amazon 2014e], [Amazon 2014f], [Google 2014], [Microsoft 2014]. As to Berkeley’s report, cloud service unavailability is the greatest inhibitor to cloud adoption [Armbrust et al. 2009]. Secondly, interactive online applications (e.g. 3-tier systems) usually have network latency constraints. A single data

Nikolay Grozev and Rajkumar Buyya are with the Cloud Computing and Distributed Systems (CLOUDS) Laboratory, Department of Computing and Information Systems, The University of Melbourne, Parkville, VIC 3010, Australia.
Email: ngrozev@student.unimelb.edu.au, rbuyya@unimelb.edu.au

Permission to make digital or hard copy of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
© 2014 ACM 1556-4665/2014/06-ART $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

centre cannot serve users distributed worldwide with adequate latency. Lastly, many businesses that operate across national boundaries need to comply with different regulations in terms of privacy, security and data location. This is of special importance for applications dealing with sensitive data (e.g. in the banking or e-health domains), which are often required to use data centres within a given territorial jurisdiction, when serving some customers [Bowen 2011]. It is unlikely that a single data centre will comply with the constraints of all targeted jurisdictions.

To overcome these issues, researchers and practitioners have envisioned the usage of multiple clouds. A Multi-Cloud is a type of Inter-Cloud where clients utilise multiple clouds without relying on any interoperability functionalities implemented by the providers [Ferrer et al. 2012], [Petcu 2013], [Grozev and Buyya 2012]. Application deployment across clouds has recently attracted interest resulting in the emergence of at least 20 projects facilitating cross-cloud deployment [Grozev and Buyya 2012]. Case studies by IBM [2013] and ebay [2014] have demonstrated how 3-tier interactive applications can utilise multiple data centres to provide better availability and QoE and to quickly adapt to changes in the demand.

Unfortunately, transitioning existing applications to Clouds or Multi-Clouds is not straightforward. A Cloud is not merely a deployment environment, where existing software solutions can be transferred. It introduces novel characteristics not existing in traditional in-house deployment environments like seemingly endless resource pool and the risk of an unpredictable outage in external infrastructure [Varia 2011]. Hence software applications need to be more scalable and fault tolerant so they can dynamically adapt to workload fluctuations by adequately allocating and releasing computing resources and autonomously and timely address infrastructure failures. Software engineers need to design for the Cloud, not only to deploy in the Cloud. This is even more important when using multiple data centres situated in different legislative domains, constructed with different hardware, network and software components and prone to different environmental risks.

The key contributions of this work are (i) a design approach for interactive 3-tier Multi-Cloud applications and (ii) adaptive dynamic provisioning and autonomous workload redirection algorithms ensuring imperative constraints are met with minimal sacrifice in cost and QoE. We focus on the 3-tier architectural pattern, as it is pervasive and many enterprise systems follow it. Our approach does not modify the 3-tier pattern itself, but introduces additional components managing the cross-cloud resource provisioning and workload distribution. This is essential as it allows the migration of existing applications to a Multi-Cloud environment. Also new Multi-Cloud 3-tier applications can be developed using the plethora of existing architectural frameworks thus leveraging proven technologies and existing know-how. The newly introduced components facilitate the implementation of 3-tier systems which observe: (i) increased availability and resilience to cloud infrastructure failure (ii) legislation and regulation compliance (iii) high QoE and (iv) cost efficiency.

The rest of the paper is organised as follows: In Section 2 we provide an overview of the related works and compare them to ours. Section 3 details the targeted class of applications. Section 4 outlines our architecture. Section 5 motivates and details our algorithms for load balancing, autoscaling and cloud selection. Our experimental settings and results are discussed in Section 6. In the final Section 7, we conclude the paper and define pathways for future work.

2. RELATED WORK

There have been significant efforts in the development of Multi-Cloud open source libraries for different languages like JClouds [2014], Apache LibCloud [2014b], Apache DeltaCloud [2014a], SimpleCloud [2012] and Apache Nuvem [2014c]. All of them pro-
vide a unified API for the management of cloud resources (e.g. VMs and storage), so that software engineers do not have to program against the specifics of each vendor's API. While not providing application brokering (consisting of provisioning and scheduling) themselves, these libraries can be instrumental in the development of new cross-cloud brokering components. Similarly, services like RightScale [2014], Enstratius (formerly enStratus) [2014], Scalr [2014] and Kaavo [2014] only provide unified user interface, APIs and tools for managing multiple clouds and it is the clients' responsibility to implement appropriate provisioning and scheduling.

Apart from these Multi-Cloud libraries and services, the OPTIMIS [Ferrer et al. 2012], Contrail [Carlini et al. 2012], mOSAIC [Petcu et al. 2011], MODA-Clouds [Ardagna et al. 2012] and STRATOS [Pawluk et al. 2012] projects also facilitate Multi-Cloud application deployment. In all of these projects the geographical locations of the serving data centres cannot be considered. Thus, often it is not possible to implement legislation aware application brokering. In contrast, in our approach the Entry Points and Data Centre Control layers enable legislation compliant user routing to eligible clouds through a process called matchmaking broadcast. Secondly, all of these projects only manage resource allocation and software component deployment, and none of them facilitates the distribution of the incoming workload to the allocated resources. Their components are only concerned with resource provisioning and set-up and do not deal with the load distribution and autoscaling of the application once it is installed. In contrast, in this work we manage the incoming workload and dynamically provision resources accordingly through the components of the Entry Points and Data Centre Control layers.

Furthermore, these projects are SLA-based, which means the application brokering is specified in a Service Level Agreement (SLA) using a declarative formalism. The Cloud Standards Customer Council (CSCC) discusses in a technical report that SLAs currently offered by cloud providers are immature [2012]. Thus, to achieve flexible application brokering these approaches rely on advances in the currently adopted SLA practices, or the introduction of new brokering components that can interpret novel SLA formalisms. In contrast, our approach directly manages the underlying provisioning and the mapping of workload to resources, without relying on advances in SLA specifications, and thus it is applicable right away.

Cloud services like Route 53 [Amazon 2014c] and AWS Elastic Load Balancer (ELB) [Amazon 2014d] can distribute incoming users to servers in multiple data centres using standard load balancing techniques. AWS ELB can distribute workload among servers located in a single or multiple AWS availability zones, but cannot direct users to clouds of other providers. Route 53 is Amazon's Domain Name System (DNS) web service. It supports Latency Based Routing (LBR), which redirects incoming users to the AWS region with the lowest latency. Both Route 53 and ELB do not consider applications' regulatory requirements when selecting a data centre site. Moreover, they do not consider the cost and the degree of utilisation of the employed within a data centre resources. In contrast, our approach for directing users to cloud sites accounts for all these aspects.

3. PRELIMINARIES

By definition an interactive 3-tier application has three layers [Fowler 2003], [Ramirez 2000], [Aarsten et al. 1996]:

— **Presentation Layer** — represents the user interface.
— **Business/Domain Layer** — features the main business logic. Accesses and modifies the data layer.
— **Data Layer** — manages the persistent data.
The presentation layer executes at the end user's site, not in the back-end servers, and thus we will not consider it. The domain layer consists of one or several application servers (AS). In Infrastructure as a Service (IaaS) cloud environments they are hosted in separate VMs. The data layer consists of one or several database (DB) servers. In a Multi-Cloud environment this software stack is replicated across all used cloud data centres. Clients arrive at one or several entry points, from where they are redirected to the appropriate data centre to serve them.

The domain layer within a data centre can scale horizontally by adding more AS VMs. For a given application, within a data centre there is a load balancer, which distributes the incoming requests to the AS servers. Every request arrives at the load balancer, which selects the AS to serve it. There are two types of 3-tier applications in terms of the domain layer design — stateful and stateless. Stateful applications keep session data (e.g. shopping carts and user meta-data) in the memory of the assigned AS server. Hence they require sticky load balancing, which ensures all requests of a session are routed to the same server. Stateless applications do not keep any state/data in memory and therefore their requests can be routed to different AS servers.

The data layer often becomes the performance bottleneck because of requirements for transactional access and atomicity. This makes it hard to scale horizontally. As to the famous CAP theorem [Brewer 2000], [Brewer 2012] a distributed database architect should balance between persistent storage consistency, availability and partition tolerance. The field of distributed horizontally scaling databases has been well explored in recent years. For example Cattell [2010] surveyed over 20 novel NoSQL and NewSQL distributed database projects. Traditional techniques like replication, caching and sharding also allow for some level of horizontal scalability.

The eligible data caching and replication strategies are very much application specific and it is impossible to incorporate them within a general framework encompassing all 3-tier applications. In other words the right balance between the CAP (consistency, availability and partition tolerance) requirements is domain inherent. For example one application may require that data is not replicated across legislative regions, while another may allow it in order to achieve better availability. Therefore in this work we do not deal with the application specific data deployment. We investigate flexible provisioning and load distribution provided the data is already deployed with respect to the application specific CAP requirements. It is the system architect’s responsibility to design the data layer in a scalable way obeying all domain specific legislation rules so that it can be accessed quickly from the domain layer. This is a reasonable constraint, as database design is usually the first step in a 3-tier system design and it often serves other applications (e.g. reporting and analytics) as well. Our approach ensures that once the data is deployed appropriately, users will be redirected accordingly and enough processing capacities will be present in the AS layer.

4. OVERALL ARCHITECTURE

4.1. Architectural Components

Figure 1 depicts the proposed architecture. We augment the traditional 3-tier architectural pattern with two additional layers of components:

— **Entry Point Layer** — responsible for redirecting incoming users to an appropriate cloud data centre to serve them.

— **Data Centre Control Layer** — responsible for: (i) providing information to the entry point layer regarding the suitability of a data centre for a given user, (ii) monitoring and scaling of the provisioned resources within a data centre and (iii) directing the incoming requests.
Fig. 1. Overall layered architecture. The Brokering components manage the system’s provisioning and workload distribution, while a standard 3-tier software stack serves the end users.

The **Entry Point Layer** consists of one or several VMs, which can be deployed in several data centres for better resilience. When users come to the system, they are initially served at an **entry point** VM. Based on the users’ location, identity, and information about each data centre, the **entry point** selects an appropriate cloud and redirects the user to it. After this, the user is served within the selected data centre and has no further interaction with the **entry point**. We emphasise that the cross-cloud interactions between **entry points** and **admission controllers** happen only once, immediately after user arrival, and hence does not result in further communication delay as the user is being served.

At first glance an **entry point** can be likened to a standard load balancer, as it redirects users to serving data centres. However, standard load balancers redirect each user request, while **entry points** redirect users only upon arrival. Furthermore, **entry points** collaborate with the **admission controllers** to implement cloud selection respecting legislative, data location, cost and QoE requirements, which is not implemented in standard load balancers.

In each data centre the **Data Centre Control Layer** consists of three VMs:

- **Admission Controller** — decides whether a user can be served within this data centre and provides an estimation of the potential cost for serving him/her. Upon request, it provides feedback to the **entry point** VMs to facilitate their choice of a data centre for a user.
- **Load Balancer** — the standard **load balancer** component from the 3-tier reference architecture. We consider it as a logical part of the **Data Centre Control Layer**, since it redirects requests to the application servers.
DC Controller — responsible for observing the performance utilisation of the running AS servers, and reactively shutting down or starting AS VM instances to meet resource demands at minimal cost.

In principal the DC Controller and the Load Balancer VMs may be replaced by services like Amazon Auto Scaling [2014a] and AWS Elastic Load Balancer (ELB) [2014d]. Nevertheless, not all cloud providers have such services. Even if a provider offers auto scaling services, it is often not possible (unlike Amazon Auto Scaling) to monitor custom performance metrics - e.g. number of live application sessions. Moreover, in Section 5 we introduce novel algorithms for load balancing and autoscaling which in conjunction reduce cost and the probability of server overload. These are not implemented by current cloud providers and hence, for generality, we will consider the usage of separate VMs for these purposes.

4.2. Component Interaction

Figure 2 depicts the interaction between components upon user arrival. In the first phase, the brokering components select an appropriate cloud site for the user, based on his/her identity. As a first step, the user authenticates to one of the entry points. At this point, the entry point has the user's identity and geographical location (extracted from the IP address). As a second step, the entry point broadcasts the user's identifier to the admission controllers of all data centres. We call this step matchmaking broadcast.

There are no restrictions on the location of the entry points. Ideally, they should be positioned in a way which minimises the network latency effects during the matchmaking broadcast. One reasonable approach is to deploy each entry point in one of the used clouds, given that the clouds are already selected in a way which serves the expected user base with adequate latency.

Within each data centre, the admission controller checks if the persistent data for this user is present. Additionally each admission controller implements application specific logic to determine which users can be served in the data centre based on the regulatory requirements. The admission controllers respond to the entry point whether the user's data is present and if they are allowed (in terms of legislation and regula-
tions) to serve the user. In the response, they also include information about the costs within the data centre.

Based on the admission controllers’ responses, the entry point selects the data centre to serve the user and redirects him/her to the load balancer deployed within it. The entry point filters all clouds which have the user’s data and are eligible to serve him/her. If there is more than one such cloud, the entry point selects the most suitable with respect to network latency and pricing. If no cloud meets the data location and legislative requirements the user is denied service.

After a data centre is selected the user is served by the AS and DB servers within the chosen cloud as prescribed by the standard 3-tier architecture. He or she does not have any further interaction with the brokering components. Hence we consider that AS servers deployed in a data centre can only access DB servers in the same data centre. This is a reasonable constraint, as often there is no SLA about the network speed and latency between data centres, and thus cross-cloud data access can lead to performance issues. Furthermore, transferring persistent data across the public Internet may be a breach of the legislation and policy requirements of many applications.

5. PROVISIONING AND WORKLOAD MANAGEMENT

5.1. Scalability Within a Cloud

Currently, the practices for load balancing among a dynamic number of VMs in a cloud environment and among a fixed number of physical servers are the same - e.g. round robin or some of its adaptations. When using physical servers, one usually tries to distribute the load so that the servers are equally loaded and all sessions are served equally well. In a cloud environment, if the number of AS VMs is insufficient, new ones can be provisioned dynamically. Similarly, if there are more than enough allocated AS VMs, some of them could be stopped to reduce costs. If the load of a stateful application is equally distributed among underutilised VMs, then no VM can be stopped without failing the sessions served there.

This is not an impediment for stateless applications, as sessions are not bound to servers and hence VMs can be stopped without causing service disruption. Thus, standard load balancing techniques like weighted round robin or “least connection” can be effective. However, in the case of stateful sessions, in order to stop an AS VM one needs to make sure it does not serve any sessions. One approach is to transfer all sessions from an AS VM to another one before shut-down. However, this is not straightforward, as active sessions together with their states need to be transferred without service interruption. A better approach is to balance the incoming workload in a way, which consolidates the sessions in as few servers as possible without violating the QoS requirements. This results in a maximum number of stoppable (i.e. not serving any sessions) servers. In essence, if the load balancer packs as many sessions as possible (without causing overload) to a few servers, then the number of stoppable servers (not serving any sessions) will be maximal.

This idea is implemented in Algorithm 1. It defines a sticky load balancing policy, and thus after the first session’s request is assigned to a server all successive ones are assigned to it as well. It takes as input, the newly arrived session \(s_i \), the list of already deployed AS servers \(VM_{as} \) and two ratio numbers in the interval \((0,1) \) - the CPU and RAM thresholds \(th_{cpu} \) and \(th_{ram} \). As a first step in the algorithm, we sort the available AS VMs in a descending order with respect to their CPU utilisation. Then we assign the incoming session to the first VM in the list, whose CPU and RAM utilisations are below \(th_{cpu} \) and \(th_{ram} \) respectively and whose input and output TCP network buffers/queues are not becoming overloaded. These buffer sizes are denoted by the Recv-Q and Send-Q values returned by the \texttt{netstat} command. To sim-
Algorithm 1: Load Balancing Algorithm

\[\text{input : } s, \text{th}_\text{cpu}, \text{th}_\text{ram}, VM_{as}\]
1 sort\text{DescendinglyByCPUUtilisation}(VM_{as});
2 hostVM ← last element of VM_{as};
3 for \(vm_i \in VM_{as}\) do
4 \(vm_{cpu} \leftarrow \text{CPU utilisation of } vm_i;\)
5 \(vm_{ram} \leftarrow \text{RAM utilisation of } vm_i;\)
6 if \(vm_{cpu} < \text{th}_\text{cpu}\) and \(vm_{ram} < \text{th}_\text{ram}\) and \(!\text{networkBuffersOverloaded()}\) then
7 \(hostVM \leftarrow vm_i;\)
8 break;
9 end
10 assignSessionTo(s, hostVM)

Algorithm 1 defines a load balancing algorithm that assigns incoming sessions to VMs based on their CPU and RAM utilisation. If no VM is underutilised, the least utilised VM is selected. The algorithm ensures that sessions are assigned to VMs that can handle them without overloading the network buffers.

The DC controller is responsible for adjusting the number of AS VMs accordingly. This implementation of the load balancer (Algorithm 1) allows the DC controller to stop AS VMs which serve no sessions. The DC controller is also responsible for instantiating new AS VMs when needed. Algorithm 2 details how this can be done when using on-demand VM instances. This algorithm is periodically executed every \(\Delta\) seconds to ensure the provisioned resources match the demand at all times. The input parameters of the algorithm are:

- \(t_{\text{cur}}\) — the current time of the algorithm call;
- \(t_{\text{gr}}_{\text{cpu}}\) — CPU trigger ratio in the interval \((0, 1)\);
- \(t_{\text{gr}}_{\text{ram}}\) — RAM trigger ratio in the interval \((0, 1)\);
- \(VM_{as}\) — list of currently deployed AS VMs;
- \(n\) — number of over-provisioned AS VMs to cope with sudden peaks in demand;
- \(\Delta\) — time period between algorithm repetitions.

If an AS VM's CPU or RAM utilisation exceeds respectively \(t_{\text{gr}}_{\text{cpu}}\) and \(t_{\text{gr}}_{\text{ram}}\) or some of its input/output TCP network buffers is becoming overloaded, we call this server overloaded. In the beginning of Algorithm 2 (lines 1-11) we inspect the statuses of all available AS VMs and note if they are overloaded or free (i.e. not serving any sessions).

In an online application, the resource demand can raise unexpectedly in the time periods between two subsequent executions of the scaling algorithm. Moreover, booting and setting up new AS VMs is not instantaneous and can take up to a few minutes depending on the underlying infrastructure. Hence, resources cannot be provisioned instantly in response to the increased workload. If the workload spike is significant,
ALGORITHM 2: Scale Up/Down Algorithm

```
input : t\_cur, t\_gr\_cpu, t\_gr\_ram, V\_M\_as, n, \Delta
nOverloaded ← 0;
listFreeVms ← empty list;
for vm ∈ V\_M\_as ; // Inspect the status of all AS VMs
do
vm\_cpu ← CPU utilisation of vm;
vm\_ram ← RAM utilisation of vm;
if vm\_cpu \geq t\_gr\_cpu or vm\_ram \geq t\_gr\_ram or networkBuffersOverloaded() then
    nOverloaded ← nOverloaded + 1;
else if vm, serves no sessions then
    listFreeVms.add(vm);
end
nFree ← length of listFreeVms;
AS ← length of V\_M\_as;
allOverloaded ← nOverloaded + nFree = AS and nOverloaded > 0;
if nFree ≤ n ; // Provision more VMs
    then
    nVmsToStart ← 0;
    if allOverloaded then
        nVmsToStart ← n - nFree + 1;
    else
        nVmsToStart ← n - nFree
    end
    launch nVmsToStart AS VMs
      else
    nVmsToStop ← 0 ; // Release VMs
    if allOverloaded then
    nVmsToStop ← nFree - n;
    else
        nVmsToStop ← nFree - n + 1
    end
    sortAscendinglyByBillingTime(listFreeVms);
    for i = 1 to nVmsToStop do
    billTime ← billing time of listFreeVms[i];
    if billTime - t\_cur < \Delta then
        terminate listFreeVms[i];
    else
        break
    end
    end
end
```

this can result in server overload and performance degradation. One solution is to over-provision AS VMs, so that unexpected workload spikes can be handled. The \(n \) input parameter of the algorithm denotes exactly that — how many AS VMs should be over-provisioned to cope with unexpected demand.

As a postcondition of the algorithm execution, there should be at least \(n + 1 \) free AS VMs if all other AS VMs are overloaded, or \(n \) otherwise. For example in the special case when \(n = 0 \), one AS VM is provisioned only if all others are overloaded. This is ensured by lines 16-24 of the algorithm.
Similarly, to avoid charges some over-provisioned VMs should be stopped whenever their number exceeds \(n \). However, it is not beneficial to terminate a running VM ahead of its next billing time. It is better to keep it running until its billing time, in order to reuse it if resources are needed again. This is ensured by lines 25-40 of the algorithm. Firstly, we sort the free VMs in ascending order with respect to their next billing time. Next, we iterate through the excessively allocated VMs and terminate only those for which the next billing time is earlier than the next algorithm execution time.

Lastly, in the previous discussion we assumed that the application is stateful - i.e. it maintains contextual user information in the memory of the AS server. For scalability reasons many applications are stateless, or they store session state in an external in-memory cache like Amazon ElastiCache [2014b]. Algorithm 2 can handle this type of applications as well by considering each AS server to be assigned 0 sessions at all times. This is reflective of the main characteristic of stateless applications that each request can be served on a different server, as no session state is kept in the servers' memory. Consequently in the algorithm all AS servers which are not overloaded will be considered free (lines 9-11) and will be viable for termination. Therefore our approach encompasses both stateful and stateless applications.

5.2. Data Centre Selection
We can largely classify the requirements for data centre selection as constraints and objectives. Constraints should not be violated under any circumstances. In this work we consider the following constraints: (i) users should be served in data centres which are compliant with the regulatory requirements and (ii) users should be served in data centres containing their data in the application's data layer. The system should prefer to deny service than to violate these constraints. In contrast, the system can continue to serve a user even if an objective is not optimised. We consider the following objectives: (i) cost minimisation and (ii) latency minimisation. In other words, upon a user arrival the entry point extracts the data centres which satisfy the constraints and selects the most suitable among them in terms of latency and cost.

While cost minimisation is a natural goal of cloud clients, it should not be pursued at the expense of end user Quality of Experience (QoE) and hence we must balance between the two objectives. The maximum acceptable latency between users and the data centres can be considered as a part of the application's SLA. Thus we can choose the optimal data centre in terms of cost, whose network latency is less than the predefined in the SLA one.

Algorithm 3 implements this idea and details the data centre selection procedure. The algorithm selects clouds for multiple users at once. Hence, users arriving at the system at approximately the same time can be dispatched to serving clouds in batch thus avoiding excessive cross cloud communication. The input parameters of the algorithm are:

- \textit{users} — identifiers of the users, for which the entry point should select a cloud.
- \textit{timeout} — period after which if a data centre's admission controller has not responded it is discarded.
- \textit{clouds} — a list of the used data centres. For each of them, we can obtain the IP addresses of the admission controller and the load balancer.
- \textit{latency}_{SLA} — SLA for the network latency between a user and the serving data centre.

In the beginning of the algorithm (lines 1-4) the entry point asynchronously broadcasts all users' identifiers to the clouds' admission controllers. After that the entry point waits until all contacted admission controllers respond or the timeout period elapses.
ALGORITHM 3: Cloud Site Selection Algorithm

\textbf{input}: \(\text{users, timeout, clouds, latency_{SLA}} \)

// Broadcast users' data to admission controllers
\begin{algorithmic}
 \For{\(c_i \in \text{clouds} \)}
 \State \(ac_i \leftarrow \text{IP address of } c_i \text{'s admission controller} \);
 \State \text{send to } ac_i \text{ users' identifier};
 \EndFor
 \State \text{wait } \text{timeout} \text{ seconds or until all clouds respond};
 \For{\(u_i \in \text{users} \)}
 \State \(\text{clouds}_{\text{accept}} \leftarrow \text{clouds eligible to serve } u_i \);
 \State \text{sortAscendinglyByPrice(clouds}_{\text{accept}}\);\)
 \State \(\text{selectedCloud} \leftarrow \text{null} \);
 \State \(\text{selectedLatency} \leftarrow +\infty \);\)
 \For{\(c_i \in \text{clouds}_{\text{accept}} \)}
 \State \(\text{latency} \leftarrow \text{latency between } u \text{ and } c_i \);
 \If{\(\text{latency} < \text{latency}_{\text{SLA}} \)}
 \State \(\text{selectedCloud} \leftarrow c_i \); \break;
 \ElseIf{\(\text{selectedLatency} > \text{latency} \)}
 \State \(\text{selectedCloud} \leftarrow c_i \);
 \State \(\text{selectedLatency} \leftarrow \text{latency} \);
 \EndIf
 \EndFor
 \If{\(\text{selectedCloud} = \text{null} \)}
 \State \text{Deny Service};\)
 \Else\)
 \State \(\text{lb} \leftarrow \text{IP of load balancer in } \text{selectedCloud} \);
 \State \text{redirect } u \text{ to } lb;\)
 \EndIf\)
 \EndFor\)
\end{algorithmic}

(line 5). At this stage unresponsive clouds whose \textit{admissions controllers} fail to respond within the timeout are discarded.

For each user, the response of the clouds' admission controllers includes: (i) a boolean value, whether the cloud is eligible to serve the user and (ii) an estimation of the cost for serving a user. Based on this input, for every user the \textit{entry point} retains the clouds eligible to serve him/her (line 7). If no eligible cloud is present the user is denied service. Otherwise, the cloud which has the smallest cost and provides latency below the SLA requirement is selected (lines 9-20). If there is no eligible cloud meeting the network latency SLA - the one with the lowest network latency to the user is selected (lines 16-19).

Note that the decision if a cloud site is eligible for a given user is application specific. For some applications with no additional privacy, security and legislation requirements all clouds may be eligible for all users. In others, certain users will have to be served within a specific legislative domain or within certified data centres based on their nationality. We assume that this application specific eligibility logic is implemented in admission controllers by application developers.

Algorithm 3 uses the network latency between the end user and the prospective serving data centres. Hence the \textit{entry point} needs to evaluate the latencies between them based on their IP addresses. By latency we denote only the network latency. We do not try to estimate the entire response time, consisting of network and server delays. We
argue this simplification does not reduce the generality of our approach, because for an interactive 3-tier application the server delays should be small and similar in all clouds provided there is no significant resource contention. In this case the variable part of the overall delay is the network latency. In Algorithm 2 we make sure the domain layer scales horizontally and enough resources are present at all times. If contention indeed occurs within a cloud site, because of either non-scalable DB layer or inappropriate choice of parameters for Algorithm 2, then we provide a back-off mechanism through the cost estimation, as discussed below. Hence we minimise the probability of resource contention within the Multi-Cloud set-up and therefore servers’ delays should be small and similar in all cloud sites.

An approximation of the network latency can be achieved in two steps. Firstly we can identify the geographical locations (longitude and latitude) of the user and a given cloud based on their IP addresses. For this we use the GeoLite [2014] database, mapping IP addresses to geospatial coordinates. As a second step, we compute the latency between a user and a cloud based on the extracted coordinates by using the PingER [2014] service. PingER is an end-to-end Internet performance measurement (IEPM) project, which constantly records the network metrics between more than 300 hosts positioned worldwide. The geospatial coordinates of each host are provided. To approximate the latency between a user and a cloud, we select the 3 pairs of PingER hosts that are closest to the user and the cloud respectively, and define the latency as a weighted sum of the 3 latencies between the hosts in these 3 pairs. The weights are defined proportionally to the proximity of the hosts to the user and the cloud. To compute the distance between the geospatial positions we use the well known Vincenty’s formulae. The data from both GeoLite and PingER can be downloaded and used offline. If latest up-to-date Internet performance data is needed it can be periodically downloaded and updated automatically.

The last missing piece of information is the cost evaluation for serving a user by a cloud (used in line 8), performed by the admission controllers. The difficulty here is to define a unified cost evaluation for different clouds, with different pricing policies and different VM types and performance.

Firstly, if the application’s infrastructure within a data centre is overloaded and it should not accept further users, it returns $+\infty$ as a cost estimation. One reason for an overload may be a lack of scalability in the DB layer. As discussed, it can be hard to scale horizontally, and given significant workload can be easily overloaded. Another reason may be a bottleneck in the data centre infrastructure - for example an internal network congestion may threaten to slow down the application’s inter-tier communication. This could be easily detected in the case of a private data centre. In a public data centre obtaining such information may be more difficult, as the cloud provider would have to expose such internal performance data to its clients. By returning $+\infty$ cost to the entry point the admission controller ensures that users are sent to this cloud only as a last resort. Hence admission controllers use the cost as a back-off mechanism.

As a first step in session cost estimation, we define $p(vm_i)$ to be the price per minute of a virtual machine vm_i. For cloud providers that charge for longer intervals (e.g. an hour like Amazon AWS) we compute this value by dividing by the number of minutes in a charge period. For each virtual machine vm_i, based on its current utilisation and the number of currently served sessions, we can approximate how many sessions $f(vm_i)$ it will be able to serve if fully utilised - see Eq. 1.

$$f(vm_i) = \frac{\text{numSessions}(vm_i)}{\max(\text{util}_{cpu}(vm_i), \text{util}_{ram}(vm_i))}$$ (1)
Therefore the term $p(vm_i)/f(vm_i)$ is representative of the session cost per minute in vm_i. To achieve better estimation, we average the cost estimations of all AS servers V, which currently serve sessions in the cloud. If no sessions are served in the cloud we use the last successful estimation for this data centre, or 0 if there has not been such. Eq. 2 summarises the previous discussion:

$$
\text{session cost per minute} = \begin{cases}
\sum_{vm_i \in V} p(vm_i)/f(vm_i) & |V| \\
\infty & \text{if overloaded} \\
\text{previous estimation} & \text{if } V = \emptyset \\
0 & \text{otherwise}
\end{cases}
$$

(2)

In the above discussion for each VM vm_i we used only the price per minute ($p(vm_i)$), number of sessions and its CPU and memory utilisations. Therefore our cost evaluation can be used even if the types of the VMs are different, as long as we can evaluate these characteristics. It is also worthwhile noting that the above cost estimation strategy is a heuristic forecast of the future cost incurred by a user, as we can not know in advance how long the user will use the system, what exactly will be his/her actions etc.

5.3. Fault Tolerance

Within the given architecture, a data centre outage can be seamlessly overcome by incorporating time-outs in the entry points. If an admission controller does not reply timely to the matchmaking broadcast, the entry point does not consider its respective cloud.

Within a cloud, the DC controller manages how the AS VMs are instantiated and stopped in order to meet QoS requirements with minimal costs. Doing so, it also monitors the AS VMs in the data centre and restarts them upon failure. In this setting, it is obvious that a failure of the DC Controller would disable the fault tolerance and scalability of the architecture. Hence, the admission controller and the load balancer run background threads that check the status of the DC controller and restart it upon failure.

VMs can take up to a few minutes to boot. A failure of the load balancer and the admission controller would mean that no users can be served in this data centre during such an outage. Thus applications requiring high availability can have multiple load balancers and admission controllers working in parallel to achieve resilience against such failure.

6. PERFORMANCE EVALUATION

Our approach to application provisioning and workload distribution is generic and testing it with all possible middleware technologies, workloads, cloud offerings and data centre locations is an extremely laborious task. In this section we demonstrate how under typical workload and set-up our approach meets imperative requirements like legislation compliance with only minimal losses in terms of latency and cost.

To validate our work, we use the CloudSim discrete event simulator [Calheiros et al. 2011], which has been used in both industry and academia for performance evaluation of cloud environments and applications. We use one of the latest CloudSim extensions allowing modelling, simulation and performance evaluation of 3-tier applications in Multi-Cloud environments [Grozev and Buyya 2013].

6.1. Experiment Setting

In our experimental set-up, we create 4 cloud data centres. We model the first two of them with the characteristics of Amazon EC2. We position one of them in Dublin, Ire-
Table I. Simulation parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Component/Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>th_CPU</td>
<td>0.7</td>
<td>Load balancer (AS Server Selection)</td>
</tr>
<tr>
<td>th_RAM</td>
<td>0.7</td>
<td>Load balancer (AS Server Selection)</td>
</tr>
<tr>
<td>tg_CPU</td>
<td>0.7</td>
<td>DC Controller (Auto Scaling)</td>
</tr>
<tr>
<td>tg_RAM</td>
<td>0.7</td>
<td>DC Controller (Auto Scaling)</td>
</tr>
<tr>
<td>n</td>
<td>1</td>
<td>DC Controller (Auto Scaling)</td>
</tr>
<tr>
<td>Δ</td>
<td>10 sec</td>
<td>DC Controller (Auto Scaling)</td>
</tr>
<tr>
<td>latencySLA</td>
<td>30 ms</td>
<td>Entry point (Cloud Selection)</td>
</tr>
</tbody>
</table>

land and the other one in New York, US. These are actual locations of EC2 availability zones. Later on we call these data centres DC-EU-E and DC-US-E respectively. We assign the VMs from these data centres IP address from Dublin and New York respectively, which are extracted from GeoLite. All VMs we allocate in these data centres have the performance characteristics and the price of EC2 m1.small instances with Linux in the respective AWS regions. We model the VM start-up times based on the empirical performance study by Mao and Humphrey [2012]. Just like in Amazon EC2, the on-demand VM billing in DC-EU-E and DC-US-E is done per hour.

To demonstrate the usage of heterogeneous cloud resources from multiple cloud providers, we model the other two data centres after Google Compute Engine. We position them in Hamina, Finland and Dalles, US as these are actual locations of Google data centres and we assign all their VMs IP addresses from these locations. We call these data centres DC-EU-G and DC-US-G. All VM characteristics and prices are modelled after the n1-standard-1-d VM type in the respective locations. As Google Compute Engine is a new cloud offering, there is no statistical analysis of its VM booting times. Thus in our simulation we consider the start-up time of a n1-standard-1-d VM to be the same as the one of an EC2 m1.small VM. Like in Google Compute Engine, VMs in DC-EU-G and DC-US-G are billed in 1 minute increments and all VMs are charged for 10 minutes at least.

In our simulation we deploy the aforementioned 3-tier architecture and brokering components, as described in the previous sections. We model one entry point VM in each data centre. To demonstrate how our approach handles resource contention in the data layer, in the experiments we assume that in each cloud the DB layer is static (i.e. not scalable) and consists of 2 DB servers, holding equal in size database shards. Table I summarises the values of the algorithms’ parameters that we use in the simulation.

6.2. Experimental Application and Workload

We base our experimental workload on the Rice University Bidding System (RUBiS) benchmarking environment [RUBiS 2014], [Amza et al. 2002]. RUBiS implements an e-commerce dynamic web site similar to eBay.com and follows the 3-tier architectural pattern having AS and DB servers.

RUBiS’s main and to the best of our knowledge newest competitor in the area of 3-tier application benchmarking is CloudSuite’s CloudStone [2014]. Unlike RUBiS, which has a simple synchronous web interface lacking any JavaScript, CloudStone implements more sophisticated asynchronous (i.e. AJAX) web user interface. While this is important for evaluating how end-users interact with a system, in this work we are interested in how to provision for and load balance the incoming server side requests. RUBiS follows the guidelines of the TPC-W [2002] specification of the Transaction Processing Performance Council (TPC), which is an industry standard for testing 3-tier e-commerce systems. The RUBiS client implements features like end user “think times” and page transitions in accordance with the predefined statistical distributions defined in TPC-W. That is why it is our method of choice for a typical 3-tier application
in terms of incoming server requests patterns per user compared to CloudStone, which does not follow a public specification.

The RUBiS workload consists of sessions, each of which consists of a string of user requests. We have deployed in a local virtualised environment the PHP version of RUBiS with a standard non-clustered MySQL database in the backend and we run a test with 100 concurrent sessions. During the test we monitor how the performance utilisations (in terms of CPU, RAM and disk) of the servers change over time as a result of the executed workload. Based on that, we define the performance utilisations over time of a typical RUBiS session. We will not describe the exact procedure for extracting a session performance model, as our previous work [Grozev and Buyya 2013] details this procedure and demonstrates experimentally the validity of the extracted model. We use this derived session performance model for our simulation.

The number of incoming sessions over a short time period can be well modelled with Poisson distribution with a constant mean λ [Cao et al. 2003], [Robertson et al. 2003]. However, over larger time periods the frequencies of user arrivals can change and are rarely constant. Hence, the number of session arrivals over time can be represented as a Poisson distribution over a frequency function of time $\lambda(t)$, which represents the variations in session arrival frequencies [Grozev and Buyya 2013].

Our experiment has a duration of 24 hours with workload which is more intensive during working hours and lower otherwise. We model the user arrival frequencies in the entry points of the two European (EU) data centres to be the same. The arrival frequencies in the US data centres are the same as those in the EU ones, only “shifted” with 12 hours to represent the time zone difference. Figure 3 depicts how the arrival frequencies per minute (i.e. $\lambda(t)$) in the entry points of the European and the US data centres change over time.

In our simulation, each user/session is assigned an IP address, which as explained previously can be used to approximate the user’s physical location and the latencies to the candidate data centres. The GeoLite [2014] database provides IP ranges for every country. In the simulation, whenever we model the arrival of a user in a US data centre, we take a random US IP from GeoLite. Similarly, all users arriving in the EU data centres are assigned random IP addresses from EU countries.

To demonstrate how our system handles regulatory requirements, we introduce an additional legislative constraint. In the simulation we assign a citizenship to each user and impose the requirement that a user with US citizenship should be served...
in a US data centre and a EU citizen should be served in the EU. As discussed we implement this logic in the admission controllers. We assign US citizenship to 10% of the users arriving in the EU entry points, and EU citizenship to 10% of the users arriving in the US clouds. Furthermore in our simulation the data of all EU citizens is replicated in both EU data centres, and the data of all US citizens is replicated in both US cloud sites. Therefore, a EU or US citizen can be served in any EU or US data centre respectively.

6.3. Baseline Approach

We compare our approach to a baseline method which uses the standard industry practices. More specifically, we have implemented a baseline simulation, which distributes the incoming users to the data centres that can serve them with the lowest latency, similarly to the Route 53 LBR service [Amazon 2014c]. Following the design of the AWS Elastic Load Balancer [Amazon 2014d], within each data centre we implement sticky load balancing that assigns new sessions to running AS servers following the Round-robin algorithm. Lastly, in our baseline simulation we implement automatic autoscaling following the design of AWS AustoSale [Amazon 2014a]. More specifically, if all AS servers within a data centre reach CPU utilisation of more than 80% – a new AS server is started. If an AS server reaches CPU utilisation below 10% it is stopped. We have also implemented a cool down period of 2.5 minutes. Just like in AWS AustoSale, we do not allow for two consequent autoscaling actions to happen within a period shorter than the cool down period.

6.4. Results

Figure 4 depicts the number of served sessions in each data centre over time. On the diagram a session is classified as failed if some of the servers handling it failed (e.g. due to out of memory error). A session is rejected if it is assigned to a data centre which is not eligible to serve it. In our simulation, this happens if a US citizen is assigned to a European data centre or vice versa. Otherwise, a session is considered served.

From Figure 4 we can see that the baseline approach redirects much fewer sessions to data centres DC-EU-G and DC-US-G in comparison to the others. This is because of the location of these data centres and the end users. As described, in our experiment all IP addresses within EU and US are likely to be used as sources of sessions with the same probability. As to the GeoLite database, and the PingER service, there are much more IP addresses located nearby and with lower latency to Dublin, Ireland and New York, US than to Hamina, Finland and Dalles, Oregon, US. Therefore, the baseline approach redirects the majority of incoming sessions to these data centres. As the data layer cannot scale up, this leads to resource contention during peak workload periods (10h-14h in the EU data centres and 22h-24h, 0h-2h in the US). This in turns causes congestion in the DB servers resulting in slowdown in session serving. As a result the number of concurrently served sessions is increased significantly, causing AS servers keeping in memory the sessions' states to fail with “out of memory” errors (in the case of DC-US-E) or to degrade response time (in the case of DC-EU-E).

Another reason for session failure in the baseline approach is the autoscaling, which terminates AS servers with low utilisation even if they serve sessions. This is visible in the case of DC-EU-E during the 16h-24h period and in DC-US-E during the 0h-4h period, when the scaling down causes several session failures, as sessions are stateful. Our approach terminates servers only if they do not serve any sessions, and thus reduces the number of session failures for stateful applications. Consequently the overall rate of session failures in the baseline is approximately 7%.

In contrast to the baseline approach, during the workload peak periods our approach redirects many sessions to DC-EU-G and DC-US-G, even though they may not be opti-
mal in terms of cost or latency. This is because the cost of a data centre is evaluated as $+\infty$ if it is overloaded (see Eq. 2) and this is used by the cloud selection Algorithm 3. As a result, our approach minimises session failure by diverting users from overloaded data centres to alternative ones. During off-peak hours, our approach also redirects most users to DC-EU-E and DC-US-E, which as discussed is optimal in terms of latency.

Furthermore, the baseline approach does not consider the stated regulatory requirements during the cloud selection stage and only uses the latency as selection criteria. Thus about 10% of the incoming sessions are redirected to ineligible clouds and are rejected. In contrast, our approach takes this into consideration, and redirects users to eligible data centres, even if this means sub-optimality in terms of latency and cost.

A session delay is defined as the sum of the latency delay and the execution delay. The latency delay is the time lost in network transfer between a user and the cloud during a session. Execution delay is the time lost due to resource contention (e.g. CPU preemption) on the server side. The session delay is a measurement of the end user experience. The simulation environment allows us to measure execution delay [Grozev
Fig. 5. Session delays in seconds

and Buyya 2013], and we can compute the latency delay based on the latency and the average number of interactions/requests during a session.

Figure 5 depicts the session delays of the users served in the European and US data centres. The delays in DC-EU-E and DC-US-E during the peak workload periods of the baseline approach significantly exceed the ones of our approach. Similarly to the session failures, this is caused by the resource contention in the DB layer. In contrast all delays in DC-EU-G and DC-US-G are insignificant since the baseline approach redirects very few users there and therefore resource contention is small. The delays in DC-US-E are smaller than those in DC-EU-E as the failures there were much more and therefore fewer sessions were actually measured (see Figure 4). In our approach the DB layer contentions are mitigated, as users are redirected to alternative data centres whenever the data layer in a given cloud is overloaded. Moreover, the overall session delays in our approach are less than 10s at all times in all data centres, showing that the effect of selecting a cloud with less than optimal latency in some cases is small.

Figure 6 shows the distributions of the achieved latencies between clients and clouds by the baseline and our approaches. The average baseline latency is lower with approximately 10ms than the one in our approach, as the baseline method greedily selects the data centre with lowest latency. Also our approach honours the stated regulatory re-
requirements and hence 10% of the users are served overseas, which contributes to the increased average latency. Still, in our approach the mean, median and the interquartile range of the latencies are below the stated SLA of 30ms thus providing for adequate QoE. End users experience the network latency through application response delays. In our approach the average network delay is higher, but the execution delay is much lower, resulting in lower overall delay (see Figure 5) and better QoE.

Lastly, the overall cost incurred by our approach is about 28% more than the cost of the baseline. Firstly, this can be attributed to the number of rejected and failed (approx. 17%) sessions in the baseline experiment. Since the baseline approach effectively served much less sessions, it needed fewer servers and therefore its cost is lower. Also in order to prevent failure, our approach redirects many sessions to more expensive data centres thus resulting in increased overall cost.

7. CONCLUSION AND FUTURE WORK
In this work we have introduced a novel approach for adaptive resource provisioning and workload distribution of 3-tier applications across clouds. It encompasses all aspects of resource management and workload redirection, including: (i) cloud selection, (ii) load balancing and (iii) autoscaling. We have introduced new architectural components and algorithms, which ensure imperative requirements like regulation compliance and high availability are not violated without sacrificing too much cost and end-user QoE. To validate our approach, we have performed simulations with a realistic cloud data centre settings, VM types, costs and network characteristics, derived from a real-life benchmarking application, cloud providers and Internet monitoring service. We have compared our approach to a baseline approach which follows current industrial best practices. Results show that our approach is a significant improvement over the baseline in terms of the achieved availability, accumulative session delay and regulatory compliance, while maintaining acceptably low cost and latency between users and serving data centres.

In the future we plan to extend our algorithms to utilise a mixture of reserved and on-demand VM instances. Also, we intend to investigate how to automatically select the most appropriate (in terms of performance and cost) type of VM in each cloud. Another interesting extension would be to consider the data centre availability (defined in the provider’s SLAs or by a 3rd party) in the cloud selection Algorithm 3.

ACKNOWLEDGMENTS
We thank Rodrigo Calheiros, Amir Vahid Dastjerdi, Adel Nadjaran Toosi, Atefeh Khosravi, Yaser Mansouri, Chenhao Qu and Deborah Magalhães for their comments on improving this work. We also thank Amazon.com, Inc for their support through the AWS in Education Research Grant.
REFERENCES

R. Cattell. 2010. Scalable SQL and NoSQL Data Stores. SIGMOD Record 39, 4 (may 2010), 12–27.

Multi-Cloud Provisioning and Load Distribution for Three-Tier Applications

IBM. 2013. IBM takes Australian Open data onto private cloud. Technical Report. IBM.

Received February 2014; revised April 2014; accepted June 2014