
Master thesis, Software Engineering ð28/Jun/11

Supervisor : Juraj Feljan, Mälardalen University

Consultant : Sylvia Ilieva, University of Sofia

Nikolay Grozev
Mälardalen University, School of

Innovation, Design and Engineering

University of Sofia, Faculty of

Mathematics and Informatics

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

Ç Introduction

Ç General comparison - background

Ç General comparison of CBSE and MDD

Ç Overview of ProCom

Ç Comparison of CBSE and MDD with respect to ProCom

Ç Conclusion

Ç Q & A

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

Ç Software development complexity is proverbial ð

especially in the embedded domain. Ways to tackle it:

ÅComponent-based software engineering (CBSE)

ÅModel Driven Development (MDD)

Ç ProCom ðcomponent model for the embedded domain.

Uses both CBSE and MDD

Ç Thesis purposes

ÅSystematically compare CBSE and MDD in general

ÅEnrich the general comparison with a case study comparing

CBSE and MDD with respect to ProCom.

ÅAnalyze the outcomes of the comparisons.

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

Ç CBSE - building software from pre -existing components

Ç Component - many definitions
Å "A software component is a unit of composition with contractually

specified interfaces and explicit context dependencies only. A software

component can be deployed independently and is subject to composition

by third party " ðSzyperski

Ç Interface - a specification of a component's access

point

Ç Component model

ÅA set of standards and conventions for a component.

ÅDefines what a component is and how it interacts with

other components

Ç Component framework ða component model

implementation.

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

Ç Rahmani: "[A model is] a description or specification of

a system and its environment for some certain

purposesò

Ç Model formalisms

Ç Model transformation - an operation which converts a

model of a system described in formalism F 1 to one

described in formalism F 2.

Ç MDD refinements ðMDA, AMDD

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

Ç Two-level hierarchy of òcomparison aspectsó

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

CBSE MDD

Drivers Component reuse Higher level of abstraction than

code. Complexity management.

Maturity Relatively mature. Some theoretical

achievements still have not made it

into practice. Many practitioners

still misunderstand basic concepts.

Controversy about real -life

usefulness of modeling. Not yet

proven in practice, though

some types of modeling have

been a basis for success stories.

Target system

specifics

Suitable for all kinds of systems,

except for ones with high demands

for extra -functional requirements.

Especially useful for product lines.

Modeling can be applied in all

kinds of systems. Most useful in

large and complex ones.

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

CBSE MDD

Requirement

specification

Most current technologies do not

allow requirements specification,

though CBSE relies on well

specified requirements.

Some models are very useful for

requirement specification - UML

use cases, BPMN etc.

Changing

requirements

Changing requirements pose great

risks - hard traceability, cyclical

requirement -component

dependency (CRCD)

Allows adequate reaction to such

a change, since the software is

more traceable. If

transformations are automatic

changes can be applied very

quickly.

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

CBSE MDD

Separation of

concerns (SoC)

SoCis implemented through

components and interfaces.

Does not define explicitly how

SoCis achieved.

Architectural

support

Technology-specific formalisms.

Lack of popular standards.

Many technologies do not

facilitate modeling at all.

Suitable for architecture and

design specifications -ArchiMate,

some UML models, ADLs

Design for Extra-

functional

requirements

òCredentialsó are still not

widely used.

UML extensions especially

designed for the purpose.

Design &

Architecture

evaluation

Does not help in

architecture/design evaluation.

Standard evaluation approaches

are used.

Standard evaluation approaches

can be used. Some models help

when discussing

design/architecture properties.

Design reuse Some component system

models can be reused. This is

hindered by the lack of popular

and standard component

modeling formalisms.

Models can be reused in case the

"donor" and "recipient" systems

use the same formalisms. Using

modeling standards like UML is a

best practice.

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

CBSE MDD

Required tools,

technologies and

their maturity

The only tool needed - component

framework. Currently CBSE tools

are considerably mature, though

some theoretical achievements

have not been widely incorporated

yet. Vendor lock -in can be avoided

by using implementations of public

component model specifications.

Sophisticated tools are

required. If a popular

modeling formalism is used

(e.g. UML) there are mature

tools available. Vendor lock -

in can be avoided by using

tools that can export models

to a popular exchange

formats - e.g. XMI.

Verification and

Validation (V&V)

Components' quality is crucial and

they should be heavily verified

and in many cases certified.

Component based systems are

easier for verification since a lot

of the work has been done at the

component level. Their validation

is similar to that of standard

systems.

Models allow for early

analysis. Model based testing

can make verification easier.

Having models expressed in

a mathematical formalism

allows automatic

verification.

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

CBSE MDD

Traceability,

understandability

and

maintainability

Depends on the quality of the

documentation and the

architecture. Maintenance

depends on the quality of the

glue code and the maintenance

support of the components.

High traceability and

understandability.

Maintainability is usually also

high, especially if the

transformations are well

automated. Problematic model

versioning, comparison and

merging.

Dealing with

legacy code

Legacy code is encapsulated

into designated components.

Legacy code must be "brought"

to the level of the models, so

that the interaction with it can

be modeled. Reverse

engineering tools are usually

used for the purpose.

Code reuse Reuse is the paramount idea.

Custom components still need to

be developed, but they are

typically reused in -house later.

Reuse benefits can be

diminished by developing too

much glue code.

Not focused on code reuse.

Code reuse may be a side

effect of model reuse.

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

CBSE MDD

Organizational

specifics

Lack of real -life proven

development methodologies.

Existing methodologies are

customized to facilitate CBSE

specific activities, roles etc.

Staff should be trained in the basic

theoretical concepts of CBSE. Use

a pilot project for gathering hands -

on experience.

Can be used with almost all

existing development

methodologies, with minor

adaptations. Steep individual

learning curve due to complex

formalisms and tools.

Enterprise modeling tools

contribute to the price of

adoption as well.

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

Ç ProCom - component model for embedded systems used

throughout SDLC

Ç Design at two level of granularity ðProSysand ProSave

Ç ProSys- coarse grained modeling

ÅSubsystems ðconcurrent active components

ÅMessage passing - typed input and output message ports

ÅHierarchical components

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

Ç ProSaveðfine grained modeling

ÅComponents encapsulate relatively small and rather low -

level, non -distributed functionality

ÅComponents are hierarchical, passive and present at design

time only. Primitive components are C functions

ÅPorts and connectors

Ç Deployment modeling

