
International Conference on Computer Systems and Technologies - CompSysTech’10

A Framework for Source Code metrics

Neli Maneva, Nikolay Grozev, Delyan Lilov

Abstract: The paper presents our approach to the systematic and tool-supported source code

measurement for quality analysis. First, we describe the results of the performed thorough study about the
use of some static measurement tools. We classify them as reporting and combining and manage to
elucidate the main requirements for a feasible framework, supporting a set of such metrics. Next the details
about the design and implementation principles of the framework are given. In conclusion we share some
ideas about future scientific and practice-oriented work in this area.

Key words: Software Metrics, Source code, Static analysis, Framework, Program quality.

INTRODUCTION
Software measurement has been introduced as a promising approach but now “it is a

professional embarrassment as of 2009 and urgently needs improvement in both the
quantity and quality of measures” [2]. In practice, the majority of software companies
measure poorly and do not keep track of historical data. Thus they are unable to monitor
and assess efficiently software development so as to improve the process and product
quality. This premises the great need for tools that help in the process of measuring and
analyzing measurements values.

Different software engineering artefacts can be automatically measured, but we focus
our research on source code measurement only. This is a reasonable choice because the
source code is one of the few mandatory and one of the most important ingredients of a
software system, since it is the primary way to implement functionality. It can be argued
that there exist software systems created by only configuring already existing components
to work together, but this is a rare case. Even in systems that rely solely on such external
components there is the so called glue code, which helps the interaction among the
different components. Unfortunately, this glue code is often a source of defects.

The program code is therefore a natural target for a diversity of tools for discovering
and predicting vulnerabilities and different problems. Monitoring and analyzing different
quantitative aspects (e.g. metrics) of the code has long been seen as a way for targeting
these goals. It has been decades since the first metrics for source code have been
developed, and since then many others have also emerged. Hundreds of theoretical and
experimental research projects have been carried out to evaluate the applicability of the
different metrics. This gives a solid ground for the development and incorporation in the
software lifecycle of tools that automate the computation of metrics values and aid the
team members in interpreting these values in order to achieve better understanding of the
code structure and other quality characteristics.

BACKGROUND AND ANALYSIS
Many of the above mentioned tools exist, and we have reviewed and experimented

with several of the available ones. We have discovered common features in their
functionalities. Therefore we propose to classify them as reporting tools and combining
tools.

The tools that we call reporting tools have the functionality to compute a predefined
set of metrics and produce reports of some kind (GUI form, pdf files, html files etc.).

International Conference on Computer Systems and Technologies - CompSysTech’10

Most of these tools have predefined thresholds and interpretation intervals for each
domain of metric values. These are used to put emphasis on inappropriate values of
metrics in the generated reports. In many tools these thresholds and intervals can be
modified by the user in order to achieve more useful reports.

The main disadvantage of the reporting tools is that the user must be aware of the
definitions and peculiarities of all the metrics represented in the report in order to reason
about the quality of the code. A software team member may find a significant use in a
reporting tool by acquiring knowledge about a few of the well known for their utility metrics
(i.e. lines of code, cyclomatic complexity). Much more can be achieved by employing a
wider “arsenal” of metrics. However, it is not realistic to expect that in every team there is a
member, who has deep insight into the peculiarities of such a wide range of metrics.

The tools that we call combining tools try to tackle this specific problem. Typically a
combining tool has most of the features of a reporting tool, but in addition it can
combine the values of the metrics in order to extract specific knowledge about the code
being analyzed. This knowledge usually is in the form of a new measure, or a highlight of a
specific design problem (anti-pattern). This “digested” knowledge actually represents an
interpretation of the values of the metrics and allows the users to ignore the details of the
concrete metrics.

In our opinion (supported by several research projects e.g. [1], [4]) the best choice of
combinations of metrics relies heavily on the context of the analyzed system. By context
we mean all factors that influence the quality of the code and the specific requirements for
the quality of the code. Examples of such factors are the used programming languages,
programming frameworks and libraries and the application area. Unfortunately, the
majority of the combining tools do not have the functionality to easily adapt their
combinations to the current context. Even more, many of these tools employ combinations,
extracted by statistical and data mining techniques over a huge set of source code files.
Such combinations are very hard to be changed in accordance with a specific context,
because this would include defining a new training set and reapplying the statistical and
data mining algorithms over it.

Another major problem that is observed in both reporting and combining tools is
that the metric computation is not context-dependent. To illustrate this problem, we give an
example with the Coupling Between Objects (CBO) metric, which is defined as “number
of classes to which a class is coupled”. It is quite natural to skip certain classes that do not
increase the complexity of a class from this count (i.e. some languages have standard
classes like String, Logger etc). Some tools have the functionality to skip such classes
which lessens the “noise” in this metric value. In some cases it is better to extend the set
of skipped classes, for example when using a standard and stable library. A typical
example is when some GUI components are developed. In this case a class representing
the GUI form usually depends on a lot of classes, representing all kinds of controls
(buttons, labels etc.). It is often better not to include these dependencies when computing
this metric for classes representing GUI forms. However, such dependencies must be
included when computing the metric value for classes implementing the business logic of a
system. This comes to illustrate how important it is that the computation of the metrics is
context-dependent. We are currently unaware of any tools that provide adequate means to
input context information and compute and combine metrics values in accordance with this
information.

OUR APPROACH TO SOURCE CODE MEASUREMENT THROUGH A FRAMEWORK

1. Framework requirements

Based on the previous analysis we have identified and will outline the properties

International Conference on Computer Systems and Technologies - CompSysTech’10

which we consider as essential ones for a source code metrics framework. Naturally such
a framework must have functionality to compute and interpret a set of metrics. The
computation of these metrics should be done in such a way, so that it is possible for a user
to tune the computation of the metrics in accordance with the context. Besides computing
metric values the framework should also have the functionality to combine these values so
as to produce specific knowledge about the code. These combinations should also be
context-dependent and a user should have the ability to change them or to define new
combinations that are more suitable for his or her purposes.

These configurations for determining the context, however, may turn out to be tedious
and lengthy to be done by a user. Besides, the users may not have the needed knowledge
to determine these settings. In this respect, the framework should employ a “convention
over configuration” policy and provide sensible “out of the box” configurations for often
recurring contexts.

2. Design and structure of the framework

Among the key ideas of the proposed framework is that a base set of metrics must
be defined. This set of metrics comprises all metrics whose values are computed by the
framework. The algorithms for the computation of these metrics values are built in the
framework and the user is not given the ability to define new metrics (except for metrics
combining measures from the base set of metrics). For each of the base-set metrics
there should be an interpretation for its values.

It is important to point out that the structure of the framework is not dependent on the
specific metrics in this set. This set must however be constructed in such a way that a
wide range of combinations for a wide range of contexts is possible. The other key idea is
that the computation of the measures and their combinations are distributed into distinct
modules. To simplify things we represent these modules as functions. The framework
comprises the following types of functions:

 Metric functions – specialized in the extraction of the value of a single metric
from the base set of metrics for a given code unit. Thus for every metric in the
base set of metrics there is a corresponding metric function. Each metric
function takes as parameters the source code artefacts needed to produce the
corresponding metric values.

 Preprocessor functions – used to prepare the parameters for the metric
functions. Each metric function has a single preprocessor function assigned to it.
Typically the preprocessor functions implement filtering of the artefacts, used for
the computation of a metric value from elements that cause this value to be
inaccurate in some context.

 Evaluation functions – used to combine the values of the metrics from the
base set of metrics to a value of a custom metric or a specific design problem
(i.e. an anti-pattern). Typically these functions are used to combine measures
into a meaningful evaluation of a code quality.

The process of evaluating a source code unit starts with the extraction of the code

artefacts (control flow graphs, dependency graphs etc.) that are to be used by the metric
functions to compute the values of the metrics in the base set of metrics. This extraction
is out of the scope of this paper. After the artefacts are extracted, the preprocessor
functions are used to refine the parameters for the corresponding metric functions. After
the refinement of the parameters, the metric functions are used for producing the values of
the metrics. These values are then used by the evaluation functions to produce different
evaluations of the code. Fig.1 illustrates how the metric, the preprocessor functions and an
evaluation function can be used in combination to achieve an evaluation of the code:

International Conference on Computer Systems and Technologies - CompSysTech’10

3. Evaluation and preprocessor functions in detail

In the computational schema described above there are two major extension points,
where the contextual tuning of the metrics and their combination can occur – the
evaluation and the preprocessor functions. In this section we explain these functions and
their purposes in detail and provide some examples.

3.1. Preprocessor functions

Informally, the purpose of a preprocessor function is to determine which artefacts are
relevant for the computation of a metric. Usually these functions only filter some artefacts
irrelevant to a metric function input. Thus a typical implementation of such a function would
be additionally parameterized with values, determining which artefacts are relevant for the
code unit being evaluated. The user has to specify these values. The mechanism for this
parameter passing from the user to the framework is not in the scope of this paper, even
though it is important for the usability of the framework.

To illustrate the interaction between the preprocessor and the metric functions we will
give an example about the computation of the above mentioned CBO metric value. The
metric function for the CBO metric takes as input the dependency graph of the classes in
an application. Thus the corresponding preprocessor function produces a dependency
graph, which is a subgraph of the original graph and includes only the nodes representing
classes that should be taken into consideration when computing the metric value. This
new graph is then passed to the metric function.

Fig.1 Illustration of the evaluation process

Fig.2 Computation of the value of CBO for the RegistrationForm class

International Conference on Computer Systems and Technologies - CompSysTech’10

Fig. 2 illustrates the computation of the CBO value for a class RegistrationForm,
which represents a standard GUI form for registering a user in a system. RegistrationForm
uses standard GUI components and communicates with classes, implementing the
business logic. Assuming that the user has specified that RegistrationForm is a custom
GUI component whose complexity is not increased from depending on standard GUI
classes and classes implementing common functionality (i.e. Loggers, Utility classes etc),
the preprocessor function has to remove these classes from the dependency graph.

3.2. Evaluation functions

Evaluation functions are also a way to specify context-dependent behaviour of the
framework. Since they are used to combine the metrics values, any “noise” in these values
should be minimized (by the proper implementations of the preprocessor functions).

Typically there are two types of evaluation functions – functions that highlight a
particular design problem in the code and functions that combine the values of the base
metrics into an evaluation of some sort of a quality of a code unit (i.e. an evaluation of the
maintainability of a class in the range 1-10). As to the former type of evaluation functions,
there are already promising researches into the area of OOP design problem recognition
using metrics [3]. However, these approaches do not use context-dependent computation
of metrics values. We believe that the context-dependent computation of metrics values in
our framework, implemented through the preprocessor functions, can lessen the “noise” in
the values of the metrics and can improve the success rate of these approaches.

The evaluation functions from the latter type combine the values of a subset of the
base set of metrics in order to produce a new value, describing a target quality of a code
unit. We call this subset of metrics an evaluation set. The evaluation set typically
consists of all the metrics which can be used to evaluate the target source code quality for
some kind of code units (i.e. all metrics, whose value indicate the maintainability of a
function). A natural approach for implementing such evaluation functions is to define their
results as a linear combination of the values of the metrics from the corresponding
evaluation set. Another approach is to use some sort of guided machine learning
techniques to determine useful combinations. Following this approach the user has to
input evaluations of code units (based on his or her expert knowledge). These evaluations
would later be used to determine the evaluation set and a function (parameterized with
this set) that approximates the evaluations, provided by the user.

The approach using machine learning techniques does not require the user to have
previous knowledge about metrics and thus has a clear advantage over the approach
using linear combinations. Evaluation functions that use explicit linear combinations may
be used by users with expertise in metrics or as default implementations.

Both of these approaches for defining evaluation functions, however, observe a
common problem. It is that when combining the metrics values inappropriate ones may be
“covered” from the values of other metrics. A value of a metric is considered inappropriate
if according to the metric interpretation, this value implies very low quality of the measured
element. That way a combination may turn out to be deceiving and to mislead the user in
certain cases. To illustrate the problem let’s consider an evaluation function f, which has
an evaluation set of metrics - m1, m2 … mn. Its value is defined as f(v1, v2, … vn) = a1v1+
a2v2+ … + anvn, where v1... vn are values of the metrics from the evaluation set for some
source code unit and a1... an are real-valued coefficients. If a value vi of a metric mi is
inappropriate, then it is possible that this is “covered” by appropriate values for the other
metrics from the evaluation set and the coefficients a1... an. For some metrics, essential to
the evaluated quality, this is not an acceptable behaviour. The problem occurs mostly for
evaluation functions that are defined as explicit linear combinations, but may also occur in
functions defined through some machine learning algorithms.

International Conference on Computer Systems and Technologies - CompSysTech’10

To solve this problem we introduce a new set of metrics called critical domain. The
critical domain is usually a subset of the evaluation set and consists of metrics, whose
values are essential to the target quality being evaluated. Thus if a critical domain is
specified, the evaluation function checks whether the values of the metrics in the critical
domain are appropriate. If any of them is not appropriate, the evaluation function returns
an inappropriate value itself. If all values in the critical domain are appropriate, then the
computation proceeds by applying the corresponding combination.

Informally, the critical domain may be thought of as a security net. It is a way for the
users to specify that they would like to observe a specific combination of metrics that does
not allow certain inappropriate values.

Since the framework should be easy to use with minimal efforts for settings, there

should be default implementations for the preprocessor and evaluation functions. These
default functions are however very much dependent on the programming languages and
technologies that are used and we will not describe them here.

CONCLUSION
Our study about the practical use of the described framework validates the feasibility

and usefulness of the chosen approach to source code measurement. We demonstrated
that the framework fulfils all of the defined requirements and that it is flexible enough to be
used successfully in a variety of contexts.

Our future research activities will be focused mainly on the further development of
specific methods for metrics preprocessing and combinations. Besides, future research
into appropriate adaption of machine learning and visualization techniques can be
beneficial to the usability of the proposed framework. Last but not least, further research is
needed to determine the best way to incorporate the framework throughout the software
lifecycle.

ACKNOWLEDGEMENTS
This work was partially supported by the National Innovative Fund attached to the

Bulgarian Ministry of Economy and Energy (project № 5ИФ-02-3 / 03.12.08).

REFERENCES
[1] G. Denaro and M. Pezze, "An Empirical Evaluation of Fault-Proneness Models",

Proceedings of the 24th International Conference on Software Engineering, 2002, pp. 241-
251

[2] C. Jones, Software Engineering Best Practices, Mc Grow Hill, 2010
[3] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice, first edition,

Berlin: Springer Verlag, 2006.
[4] N. Nagappan, T. Ball and A. Zeller, "Mining Metrics to Predict Component

Failures", Proceedings of the 28th international conference on Software engineering,
2006, pp. 452-461

ABOUT THE AUTHORS
Assoc.Prof. PhD Neli Maneva, Software Engineering Department, Institute of

Mathematics and Informatics - BAS, “Acad. G. Bonchev” str. bl.8, 1113 Sofia, Bulgaria,
tel. (02) 979 28-75, e-mail: neli.maneva@gmail.com

Nikolay Grozev, Musala Soft Ltd. 36 Dragan Tsankov blvd. Sofia, Bulgaria +359 2
969 58 21, nikolay.grozev@musala.com

Delyan Lilov, Musala Soft Ltd. 36 Dragan Tsankov blvd. Sofia, Bulgaria +359 2 969
58 21, delyan.lilov@musala.com

mailto:neman@gbg.bg
mailto:nikolay.grozev@musala.com
mailto:delyan.lilov@musala.com

