
Master thesis, Software Engineering – 28/Jun/11

Supervisor: Juraj Feljan, Mälardalen University

Consultant: Sylvia Ilieva, University of Sofia

Nikolay Grozev
Mälardalen University, School of

Innovation, Design and Engineering

University of Sofia, Faculty of

Mathematics and Informatics

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

 Introduction

 General comparison - background

 General comparison of CBSE and MDD

 Overview of ProCom

 Comparison of CBSE and MDD with respect to ProCom

 Conclusion

 Q & A

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

 Software development complexity is proverbial –

especially in the embedded domain. Ways to tackle it:

• Component-based software engineering (CBSE)

• Model Driven Development (MDD)

 ProCom – component model for the embedded domain.

Uses both CBSE and MDD

 Thesis purposes

• Systematically compare CBSE and MDD in general

• Enrich the general comparison with a case study comparing

CBSE and MDD with respect to ProCom.

• Analyze the outcomes of the comparisons.

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

 CBSE - building software from pre-existing components

 Component - many definitions
• "A software component is a unit of composition with contractually

specified interfaces and explicit context dependencies only. A software

component can be deployed independently and is subject to composition

by third party" – Szyperski

 Interface - a specification of a component's access

point

 Component model

• A set of standards and conventions for a component.

• Defines what a component is and how it interacts with

other components

 Component framework – a component model

implementation.

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

 Rahmani: "[A model is] a description or specification of

a system and its environment for some certain

purposes“

 Model formalisms

 Model transformation - an operation which converts a

model of a system described in formalism F1 to one

described in formalism F2.

 MDD refinements – MDA, AMDD

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

 Two-level hierarchy of “comparison aspects”

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

CBSE MDD

Drivers Component reuse Higher level of abstraction than

code. Complexity management.

Maturity Relatively mature. Some theoretical

achievements still have not made it

into practice. Many practitioners

still misunderstand basic concepts.

Controversy about real-life

usefulness of modeling. Not yet

proven in practice, though

some types of modeling have

been a basis for success stories.

Target system

specifics

Suitable for all kinds of systems,

except for ones with high demands

for extra-functional requirements.

Especially useful for product lines.

Modeling can be applied in all

kinds of systems. Most useful in

large and complex ones.

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

CBSE MDD

Requirement

specification

Most current technologies do not

allow requirements specification,

though CBSE relies on well

specified requirements.

Some models are very useful for

requirement specification - UML

use cases, BPMN etc.

Changing

requirements

Changing requirements pose great

risks - hard traceability, cyclical

requirement-component

dependency (CRCD)

Allows adequate reaction to such

a change, since the software is

more traceable. If

transformations are automatic

changes can be applied very

quickly.

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

CBSE MDD

Separation of

concerns (SoC)

SoC is implemented through

components and interfaces.

Does not define explicitly how

SoC is achieved.

Architectural

support

Technology-specific formalisms.

Lack of popular standards.

Many technologies do not

facilitate modeling at all.

Suitable for architecture and

design specifications -ArchiMate,

some UML models, ADLs

Design for Extra-

functional

requirements

“Credentials” are still not

widely used.

UML extensions especially

designed for the purpose.

Design &

Architecture

evaluation

Does not help in

architecture/design evaluation.

Standard evaluation approaches

are used.

Standard evaluation approaches

can be used. Some models help

when discussing

design/architecture properties.

Design reuse Some component system

models can be reused. This is

hindered by the lack of popular

and standard component

modeling formalisms.

Models can be reused in case the

"donor" and "recipient" systems

use the same formalisms. Using

modeling standards like UML is a

best practice.

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

CBSE MDD

Required tools,

technologies and

their maturity

The only tool needed - component

framework. Currently CBSE tools

are considerably mature, though

some theoretical achievements

have not been widely incorporated

yet. Vendor lock-in can be avoided

by using implementations of public

component model specifications.

Sophisticated tools are

required. If a popular

modeling formalism is used

(e.g. UML) there are mature

tools available. Vendor lock-

in can be avoided by using

tools that can export models

to a popular exchange

formats - e.g. XMI.

Verification and

Validation (V&V)

Components' quality is crucial and

they should be heavily verified

and in many cases certified.

Component based systems are

easier for verification since a lot

of the work has been done at the

component level. Their validation

is similar to that of standard

systems.

Models allow for early

analysis. Model based testing

can make verification easier.

Having models expressed in

a mathematical formalism

allows automatic

verification.

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

CBSE MDD

Traceability,

understandability

and

maintainability

Depends on the quality of the

documentation and the

architecture. Maintenance

depends on the quality of the

glue code and the maintenance

support of the components.

High traceability and

understandability.

Maintainability is usually also

high, especially if the

transformations are well

automated. Problematic model

versioning, comparison and

merging.

Dealing with

legacy code

Legacy code is encapsulated

into designated components.

Legacy code must be "brought"

to the level of the models, so

that the interaction with it can

be modeled. Reverse

engineering tools are usually

used for the purpose.

Code reuse Reuse is the paramount idea.

Custom components still need to

be developed, but they are

typically reused in-house later.

Reuse benefits can be

diminished by developing too

much glue code.

Not focused on code reuse.

Code reuse may be a side

effect of model reuse.

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

CBSE MDD

Organizational

specifics

Lack of real-life proven

development methodologies.

Existing methodologies are

customized to facilitate CBSE

specific activities, roles etc.

Staff should be trained in the basic

theoretical concepts of CBSE. Use

a pilot project for gathering hands-

on experience.

Can be used with almost all

existing development

methodologies, with minor

adaptations. Steep individual

learning curve due to complex

formalisms and tools.

Enterprise modeling tools

contribute to the price of

adoption as well.

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

 ProCom - component model for embedded systems used

throughout SDLC

 Design at two level of granularity – ProSys and ProSave

 ProSys - coarse grained modeling

• Subsystems – concurrent active components

• Message passing - typed input and output message ports

• Hierarchical components

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

 ProSave – fine grained modeling

• Components encapsulate relatively small and rather low-

level, non-distributed functionality

• Components are hierarchical, passive and present at design

time only. Primitive components are C functions

• Ports and connectors

 Deployment modeling

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

Summary

Drivers Drivers for using ProCom are the same as those for CBSE & MDD

CBSE perspective: Component reuse

MDD perspective: Work at a higher level of abstraction than

code. Complexity management. Early evaluation.

Maturity Relatively mature, though still under development. Still not tested in

industrial environment.

CBSE perspective: Relatively mature from theoretical

perspective - incorporates components throughout the whole

lifecycle, allows specification of extra-functional properties

MDD perspective: Incorporates the basic ideas of MDD -

defines modeling formalisms for representing a system from

different viewpoints, a system is developed as a series of models

related with transformations.

Target system

specifics

Embedded systems.

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

Summary

Requirement

specification

No a general purpose way for specifying requirements.

CBSE perspective: The attribute framework for specifying

extra-functional component properties can be used to model

extra-functional requirements.

MDD perspective: N/A

Changing

requirements

Better than many existing component technologies, because of the

amount of modeling extending the core CBSE ideas.

CBSE perspective: Model driven techniques mitigate many of

the inherent for CBSE problems. Cyclical requirement-component

dependency (CRCD) is still a problem.

MDD perspective: ProCom systems are more traceable due to

the employed modeling techniques. This allows for an adequate

reaction to a change in the requirements.

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

Summary

Separation of

concerns (SoC)

CBSE perspective: SoC is implemented through components

and interfaces.

MDD perspective: Components in ProCom are design-time

entities and thus they are the SoC elements in terms of MDD

as well.

Architectural

support

ProSys models and the deployment models can be considered as

two architectural views.

CBSE perspective: introduces its own ways for architecture

specification formalisms - ProSys and the deployment

modeling formalism.

MDD perspective: ProSys can be seen as a modeling

formalism for specifying architecture. ProSys and the

deployment models can be seen as two related architectural

models of a system.

Design for

Extra-functional

requirements

CBSE perspective: uses a custom attribute framework for

specifying extra-functional requirements based on the

“credentials” approach.

MDD perspective: N/A

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

Summary

Design &

Architecture

evaluation

CBSE perspective: N/A

MDD perspective: ProCom takes a model driven approach to

design and architecture evaluation by providing interrelated

models/views suitable for different analyses.

Design reuse CBSE perspective: N/A

MDD perspective: Functional design in ProCom can be reused,

since it is expressed through ProSys & ProSave components which

are design time entities (models).

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

Summary

Required tools,

technologies and

their maturity

CBSE perspective: N/A

MDD perspective: Due to the support for visual modeling

formalisms ProCom implies the use of sophisticated IDEs like

ProCom

Verification and

Validation (V&V)

The research about V&V of ProCom components and systems is in

an early conceptual phase.

CBSE perspective: N/A

MDD perspective: model based testing, model analyses.

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

Summary

Traceability,

understandability

and

maintainability

CBSE perspective: N/A

MDD perspective: High traceability and maintainability because

of the many interrelated models. Problematic versioning and

merging of the visual models.

Dealing with

legacy code

CBSE perspective: Legacy code is divided into components of

different granularity and then reused.

MDD perspective: Components in ProCom are design-time

entities and thus when the legacy code is divided into

components these can be used for modeling as well.

Code reuse CBSE perspective: Components are the main artifacts of reuse.

Because of the specifics of the embedded domain, significant

reuse is most likely to occur within a suite of similar projects.

MDD perspective: In ProCom model reuse and component reuse

is more or less the same thing. Reusing deployment models leads

to reuse of executables.

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

Summary

Organizational

specifics

CBSE perspective: implies customization of existing development

methodologies. New development roles in the process. Suitable for

product lines. A pilot low-priority project may be used for

experimenting and training purposes.

MDD perspective: Unlike most MDD technologies, ProCom implies

significant changes in the used development methodologies. New

modeling formalisms and thus employees’ qualification is of even

greater concern than in other MDD technologies. Steep individual

learning curve and great need for training

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

 General comparison

• CBSE is superior to MDD when it comes to code reuse, legacy code and tool support

• Component technologies imply less steep learning curve

• CBSE implies changes of existing development methodologies

• MDD results in more traceable, maintainable and resilient to changes systems

• MDD technologies are superior in terms of defining software architecture or design.

 By extending the core CBSE concepts with adequate modeling capabilities

these shortcomings of the current component based approaches can be

mitigated.

 ProCom comparison

• Augments the core concepts of CBSE with several model driven approaches

• Shortcomings of CBSE concerning traceability, maintainability, analyzability and

specifying architecture and design are mitigated in ProCom.

• Steep learning curve due to the new modeling formalisms.

• Need for specific development methodologies as in CBSE.

Master thesis in Software Engineering - 28 June 2011 University of Sofia, Mälardalen University

Thank you!

